首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58509篇
  免费   4879篇
  国内免费   6160篇
  2023年   1195篇
  2022年   1177篇
  2021年   1777篇
  2020年   1868篇
  2019年   2653篇
  2018年   2313篇
  2017年   1992篇
  2016年   1799篇
  2015年   1757篇
  2014年   2956篇
  2013年   3756篇
  2012年   2265篇
  2011年   2684篇
  2010年   2117篇
  2009年   2757篇
  2008年   2842篇
  2007年   3101篇
  2006年   2757篇
  2005年   2346篇
  2004年   1989篇
  2003年   1863篇
  2002年   1704篇
  2001年   1464篇
  2000年   1234篇
  1999年   1051篇
  1998年   996篇
  1997年   896篇
  1996年   828篇
  1995年   833篇
  1994年   814篇
  1993年   702篇
  1992年   695篇
  1991年   690篇
  1990年   526篇
  1989年   537篇
  1988年   479篇
  1987年   470篇
  1986年   443篇
  1985年   693篇
  1984年   925篇
  1983年   735篇
  1982年   777篇
  1981年   607篇
  1980年   626篇
  1979年   556篇
  1978年   445篇
  1977年   406篇
  1976年   374篇
  1974年   246篇
  1973年   258篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The alga Analipus japonicus (Harv.) Wynne displays a distinct seasonal pattern in its development in Peter the Great Bay (Sea of Japan). In winter and spring, it occurs only in the form of basal crusts, and vertical axes develop in the summer–autumn period. It reproduces mostly asexually from July to November. Algae with unilocular sporangia occur very seldom, only in June and July.  相似文献   
2.
《Cell reports》2020,30(4):1152-1163.e4
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   
3.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
4.
Three naturally occurring isocoumarins (paepalantine, paepalantine 9-O-beta-D-glucopyranoside and paepalantine 9-O-beta-D-allopyranosyl(1 --> 6) glucopyranoside) and two semi-synthetic analogues, 9,10-acylated compound and 9-OH-10-methylated compound, structurally similar to paepalantine, were evaluated for antimicrobial activity using a spectrophotometric microdilution technique. The paepalantine was active against S. aureus, S. epidermidis, and E. faecalis while the other four compounds proved ineffective against all microorganisms tested at concentrations of 500 microg/ml. Variations in phenolic substitution at OH-9 and/or OH-10 in the paepalantine molecule resulted in compounds without antimicrobial activity. A combination of structural features, two phenolic groups as cathecolic system, forms an oxygenated system arrangement that may reflect the potentially antimicrobial properties of paepalantine.  相似文献   
5.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
6.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
7.
W D Davies  J Pittard  B E Davidson 《Gene》1985,33(3):323-331
Defective transducing phages carrying aroG, the structural gene for phenylalanine (phe)-inhibitable phospho-2-keto-heptonate aldolase (EC 4.1.2.15; previously known as 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase[phe]), have been isolated, and DNA from two of these phages has been used to construct a restriction map of the region from att lambda to aroG. A 7.6-kb PstI-HindIII fragment from one of these phages was cloned into pBR322 and shown to contain aroG. The location of aroG within the 7.6 kb was established by subcloning and Tn3 transpositional mutagenesis. A fragment carrying the aroG promoter and operator has been cloned into a high copy number promoter-cloning vector (pMC489), and the resulting aroGpo-LacZ' (alpha) fusion subcloned in a low copy number vector. Strains with this fusion on the low copy number vector exhibit negative regulation of beta-galactosidase expression by both phenylalanine and tryptophan and positive regulation by tyrosine in a tyrR+ background.  相似文献   
8.
9.
We studied the impulse activity of neurons of the basal and lateral amygdalar nuclei generated when experimental animals (rats) performed fast stereotyped food-procuring movements by the forelimb. Within the basolateral amygdala, there are neurons whose activity is related to different stages of getting off the food, and according to the characteristics of their spiking these neurons should be divided into a number of subpopulations. Activation forestalling the movement initiation by 0.5-1.0 sec was observed in most neurons of the basolateral amygdala; this is considered a manifestation of excitation related to a motivation component of the food-procuring behavior. Activation of amygdalar neurons following movement initiation can result from generation in this structure of additional excitation necessary for successful performance of a complete food-procuring motor cycle.  相似文献   
10.
In this paper very simple nonparametric classification rule for mixtures of discrete and continuous random variables is described. It is based on the method of nearest neighbor proposed by Cover and Hart (1967). The bounds on the limit of the nearest neighbor rule risks are given. Both lower and upper bound depend on the Bayes risk and the loss function. Finally the method is compared with other existing methods on some practical data set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号